[1] I. Verbauwhede, D. Karaklajic, et J.-M. Schmidt, « The Fault Attack Jungle - A Classification Model to Guide You », sept. 2011,
p. 38, doi: 10.1109/FDTC.2011.13.
[2] S. P. Skorobogatov et R. J. Anderson, « Optical Fault Induction Attacks », in CHES 2002, doi: 10.1007/3-540-36400-5_2.
[3] D. H. Habing, « The Use of Lasers to Simulate Radiation-Induced Transients in Semiconductor Devices and Circuits », IEEE
Trans. Nucl. Sci., vol. 12, no 5, p. 91100, oct. 1965, doi: 10.1109/TNS.1965.4323904.
[4] F. J. Henley, « Logic Failure Analysis of CMOS VLSI using a Laser Probe », in 22nd International Reliability Physics Symposium,
avr. 1984, p. 6975, doi: 10.1109/IRPS.1984.362022.
[5] D. J. Burns, et al, « Reliability/Design Assessment by Internal-Node Timing-Margin Analysis using Laser Photocurrent-
Injection », in 22nd International Reliability Physics Symposium, avr. 1984, p. 7682, doi: 10.1109/IRPS.1984.362023.
[6] C. Ananiadis, A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri, et R. Leveugle, « On the development of a new
countermeasure based on a laser attack RTL fault model », in 2016 DATE, mars 2016, p. 445450.
[7] R. Micheloni, L. Crippa, et A. Marelli, Inside NAND Flash Memories. Springer Science & Business Media, 2010.
[8] T. R. Oldham et F. B. McLean, « Total ionizing dose effects in MOS oxides and devices », IEEE Trans. Nucl. Sci., vol. 50, no 3,
p. 483499, juin 2003, doi: 10.1109/TNS.2003.812927.
[9] T. R. Oldham, Ionizing Radiation Effects in MOS Oxides. World Scientific, 1999.
[10] S. Gerardin et al., « Radiation Effects in Flash Memories », IEEE Trans. Nucl. Sci., 2013, doi: 10.1109/TNS.2013.2254497.
[11] S. Anceau, P. Bleuet, J. Clédière, L. Maingault, J. Rainard, et R. Tucoulou, « Nanofocused X-Ray Beam to Reprogram Secure
Circuits », in CHES 2017, September 25-28, 2017, Proceedings, 2017, p. 175188.
[12] J. Breier et X. Hou, « Introduction to Fault Analysis in Cryptography », in Automated Methods in Cryptographic Fault Analysis,
J. Breier, X. Hou, et S. Bhasin, Éd. Cham: Springer International Publishing, 2019, p. 110.
[13] J. Dutertre et al., « Laser Fault Injection at the CMOS 28 nm Technology Node: an Analysis of the Fault Model », in 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), sept. 2018, p. 1‑6, doi: 10.1109/FDTC.2018.00009.
[14] N. Asadizanjani, M. Tehranipoor, et D. Forte, « PCB Reverse Engineering Using Nondestructive X-ray Tomography and Advanced Image Processing », IEEE Trans. Compon. Packag. Manuf. Technol., 2017, doi: 10.1109/TCPMT.2016.2642824.
[15] M. Holler et al., « High-resolution non-destructive three-dimensional imaging of integrated circuits », Nature, vol. 543, no 7645, p. 402‑406, mars 2017, doi: 10.1038/nature21698.
[16] M. Alam, H. Shen, N. Asadizanjani, M. Tehranipoor, et D. Forte, « Impact of X-Ray Tomography on the Reliability of Integrated Circuits », IEEE Trans. Device Mater. Reliab., vol. 17, no 1, p. 59‑68, mars 2017, doi: 10.1109/TDMR.2017.2656839.
[17] M. T. Rahman et al., « Physical Inspection Attacks: New Frontier in Hardware Security », in 2018 IEEE 3rd International Verification and Security Workshop (IVSW), juill. 2018, p. 93‑102, doi: 10.1109/IVSW.2018.8494856.
[18] R. Karri et al, « Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers », IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., déc. 2002, doi: 10.1109/TCAD.2002.804378.
[19] P. Maistri, P. Vanhauwaert, et R. Leveugle, « A Novel Double-Data-Rate AES Architecture Resistant against Fault Injection », in Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), sept. 2007, p. 54‑61, doi: 10.1109/FDTC.2007.8.
[20] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, et M. Renaudin, « Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-Based FPGA », J. Cryptol., vol. 24, no 2, p. 247‑268, avr. 2011, doi: 10.1007/s00145-010-9083-9.
[21] B. Selmke, J. Heyszl, et G. Sigl, « Attack on a DFA Protected AES by Simultaneous Laser Fault Injections », in 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), août 2016, p. 36‑46, doi: 10.1109/FDTC.2016.16.
[22] K. Wu, Ramesh Karri, G. Kuznetsov, et M. Goessel, « Low cost concurrent error detection for the advanced encryption standard », in 2004 International Conferce on Test, oct. 2004, p. 1242‑1248, doi: 10.1109/TEST.2004.1387397.
[23] R. Leveugle et al., « Laser-induced fault effects in security-dedicated circuits », in 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC), oct. 2014, p. 1‑6, doi: 10.1109/VLSI-SoC.2014.7004184.
[24] T. Schneider, A. Moradi, et T. Güneysu, « ParTI – Towards Combined Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks », in CRYPTO 2016, août 2016, p. 302‑332, doi: 10.1007/978-3-662-53008-5_11.
[25] L. D. Meyer, V. Arribas, S. Nikova, V. Nikov, et V. Rijmen, « M&M: Masks and Macs against Physical Attacks », IACR Trans. Cryptogr. Hardw. Embed. Syst., p. 25‑50, 2019, doi: 10.13154/tches.v2019.i1.25-50.
[26] F. Faccio et al., « Total ionizing dose effects in shallow trench isolation oxides », Microelectron. Reliab., vol. 48, no 7, p. 1000‑1007, juill. 2008, doi: 10.1016/j.microrel.2008.04.004.
[27] H. H. K. Tang, « SEMM-2: A new generation of single-event-effect modeling tools », IBM J. Res. Dev., vol. 52, no 3, p. 233‑244, mai 2008, doi: 10.1147/rd.523.0233.
[28] B. D. Sierawski et al., « Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions », IEEE Trans. Nucl. Sci., vol. 56, no 6, p. 3085‑3092, déc. 2009, doi: 10.1109/TNS.2009.2032545.
[29] V. Correas, Thèse de l'Université de Monpellier, 2008.
[30] G. Hubert et al., « A review of DASIE code family: contribution to SEU/MBU understanding », in 11th IEEE International On-Line Testing Symposium, juill. 2005, p. 87‑94, doi: 10.1109/IOLTS.2005.12.
[31] S. Uznanski et al, « Single Event Upset and Multiple Cell Upset Modeling in Commercial Bulk 65-nm CMOS SRAMs and Flip-Flops », IEEE Trans. Nucl. Sci., vol. 57, no 4, p. 1876‑1883, août 2010, doi: 10.1109/TNS.2010.2051039.
[32] www.robustchip.com
[33] www.iroctech.com
[34] P. Peronnard, R. Velazco, et G. Hubert, « Real-Life SEU Experiments on 90 nm SRAMs in Atmospheric Environment: Measures Versus Predictions Done by Means of MUSCA SEP3 Platform », IEEE Trans. Nucl. Sci, 2009, doi 10.1109/TNS.2009.2033362.
[35] G. Hubert et L. Artola, « Single-Event Transient Modeling in a 65-nm Bulk CMOS Technology Based on Multi-Physical Approach and Electrical Simulations », IEEE Trans. Nucl. Sci., déc. 2013, doi: 10.1109/TNS.2013.2287299.
[36] N. Rostand, et al, « Single Event Transient Compact Model for FDSOI MOSFETs Taking Bipolar Amplification and Circuit Level Arbitrary Generation Into Account », in 2019 SISPAD, sept. 2019, p. 1‑4, doi: 10.1109/SISPAD.2019.8870520.